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ABSTRACT
The breeding method has been used to generate perturbations for ensemble

forecasting at NMC since Decembe' 1992. Atthattime a single breedingcycle with apairof
bred forecasts was implemented. A combination of bred perturbations and lagged

forecasts provided-a daily set of 14 global forecasts valid to 10 days. In March 1994, the

ensemble was .expanded to .7 independent breeding cycles on the new Cray C90

supercomputer, and the forecasts extended to 16 days:.' This provides 46 independent

global forecasts valid for two weeks every day.

For efficient ensemble forecasting, the initial perturbations to the control analysis
should adequately sample the space of possible analysis errors. We point out that the

analysis cycle is like a breeding cycle: it acts as a nonlinear perturbation model upon the

evolution of the real atmosphere. The perturbation (i.e., theanalysis error), carried forward

in the first guess forecasts, is "scaled down" at regular intervals by the use of observations.

Because of.this, growing errors associated with the evolving state of the atmosphere
develop within the analysis cycle and. dominate subsequent forecast error growth.

The breeding method simulatesthe development of growing errors in the analysis

cycle. A difference field between two nonlinear forecasts is carried forward (and scaled

down at regular intervals) upon the'evolving atmospheric analysis fields. By construction,

the bred modes are superpositions of the leading local (time dependent) Lyapunov vectors
(LLVs) of the atmosphere. An important property of the leading LLVs is that all random

perturbations assume their structure after a transientperiod. When several independent

breeding cycles are performed, the phases and amplitudes of individual (and regional)

leading LLVs are random, which ensures quasi-orthogonality among the global bred

modes from independent breeding cycles.
Off-line experimental runs with a 10-member ensemble (5 independent breeding

cycles) show that the ensemble mean is superior to an optimally smoothed control and to

randomly generated ensemble forecasts, and compares favorably with the medium range

double horizontal resolution control.. Moreover, a potentially useful relationship between

ensemble spread and forecast error is also found both in the spatial and time domain. The

improvement in skill of 0.04-0.11 in AC in forecasts at and beyond 7 days, together with the

potential for estimation of the skill, suggest that this system will be a useful operational

forecast tool. The results and methodology.discussed should be applicable to the new
operational ensemble configuration; where 17 independent forecasts are performed every
day.

The two methods used so far to produce operational ensemble forecasts, i.e.,

breeding and the adjoint (or "optimal perturbations"). technique applied at ECMWF, have

several significant differences, but they both attempt to estimate the subspace -of fast

growing perturbations. The bred modes are estimates of fastest sustainable growth and as

such they represent probable growing analysis errors. The optimal perturbations, on the.

other hand, estimate vectors.with fastest transient growth and are less likely to occur in
analysis error fields. A major practical difference between the two methods for ensemble
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forecasting is that breeding is much simpler and far less expensive than the adjoint
technique.
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1. INTRODUCTION

It has long been accepted that running an ensemble of numerical forecasts from

slightly perturbed initialconditions can have a beneficial impact on the skill of the forecast

by means of ensemble averaging (e.g., Leith, 1974). Beyond providing a better estimate of

the first moment of possible future states, the ensemble members also offer the possibility
of estimating higher moments such as the forecast spread, which can be used as an

indicator of expected skill, and, Ultimately, the full probability distribution. Theoretically, the

probability of future states can also be computed through the Liouville equations (e.g.,

Ehrendorfer,.1993), if the initial probability distribution is assumed to be known.- However,

computational and other problems make the use of these, equations unfeasible for

numerical weather prediction in.the foreseeable future. The only current practical solution
to estimating forecast probabilities is through ensemble forecasting:

One of the crucial aspects of an ensemble strategy is the generation of initial

perturbations. These perturbations should realistically represent the span of possible
errors in our control analysis. But since the number of ensemble forecast members is
strongly limited by computational costs, it is essential that this limited number of

perturbations optimally sample the initial error probability distribution.
In this paper we discuss some of the properties of the breeding method used for

ensemble forecasting at NMC since 7 December 1992. Atthat timea system with a single
breeding cycle was introduced, and.a combination of bred perturbations and-up to two-day

lagged forecasts provided 14 global predictions valid to 10 days every day'(Tracton and

Kalnay, 1993, Toth'and Kalnay, 1993). In March 1994, the ensemble was expanded to 7

independent breeding cycles on the new Cray C90 supercomputer, and the forecasts were
extended to 16 days. This configuration provides now 46 independent global forecasts

valid for two weeks every day. The results presented here were obtained in the process of

investigating optimal strategies for the breeding method, many of which have been
incorporated into operations.

In sections 2 and 3 we discuss basic questions related to ensemble forecasting. In

sections 4 and 5 the characteristics and several technical aspects of the breeding method

used at NMC for generating initial ensemble perturbations are pesented. Section 6 is

devoted to experimental results. A short' review about the operational implementation,
further discussions and conclusions are found in sections 7 and 8.

2. ENSEMBLE FORECASTING AND NONLINEAR FILTERING

Leith (1974) showed that averaging the ensemble forecasts yields a mean'forecast

superiorto the control forecast, as long as the ensemble perturbations are representative of
the initial probability distribution of the basic flow around the control analysis. We illustrate
why this is the case by means of a very simple error growth 'example. 

Consider a traveling extratropical low. At the initial time, we assume that the center'

of the low is analyzed with a small error Eo. We assume that the error will grow
.: ~. \ : , , , l, . . .: , 
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exponentially at first, and that later nonlinear effects will lead to error saturation. We can
therefore use Lorenz'. (1982) simple error growth model:

dv/dt av(1-v) (1)

where v(t).is the algebraic forecast error measured at the center of the system at time tand-a
is the linear growth rate. We can create a simple ensemble by adding and subtracting a
perturbation P from the control analysis. These perturbed analyses will have an error of
Eo+P and Eo-P, respectively. If the. perturbation size is smaller than 2Eo, one of these
perturbed analyses will be closer to the true atmospheric solution than the control analysis,
though we do not know a prioriwhich one it is. If the perturbed initial'conditions are plugged
into the error equation (1), it is easyto see that the average of the two perturbed forecasts
has a smaller error than the control at any forecast time t.

Vcon (t) > (Vpos(t) + Vneg(t))/2 (2)

where vpos(t) and vneg(t) are the errors for the two perturbed forecasts. In Fig. 1, we show
an example of the effect of ensemble averaging in this simple model.

We can generalize the above simple example by assuming that we measure the
error v(t) over the whole domain of a synoptic system. In this case, the initial error is a vector
Eo of magnitude E0, whose direction represents a particularspatial distribution pattern. Let
us assume that the error growth with time is still given by (1). If the initial perturbation is
chosen along the initial error pattern, i.e., if Po is'parallel to Eo, then equation (2) is still valid.
Ensemble averaging again provides a nonlinear filter that removes part of the growing
error. As we will see-later, much of this improvement is a characteristic of ensemble
averaging and cannot be reproduced by simplespatial filtering.

.On tlhe other hand, if P0 is a growing perturbation orthogonal to Eo, ensemble
averaging will result in a worse forecast than the control, which has noerror along PO. The
ensemble average will diverge.from the control forecast due to the different nonlinear
evolution of the +Po and -Po perturbations, whose growth is also. represented by equations
(1) and (2), and therefore it will have a larger total error than the control. This example,
although admittedly very simplistic, makes a strong case for the use of perturbations that
are realistic analysis errors as initial ensemble perturbations: Growing errors that are not
present in the analysis as errors may be counterproductive for ensemble forecasting, by
increasing the- error in the ensemble average.

We mention in passing that ideally one would like to use a large ensemble to
represent, with different probabilities, all possible states'of the atmosphere, given the

-control-analysis. In this case the ensemble mean would provide at all lead times the best
estimate possible forthe future state of.the:atmosphere. In practice., however, only a small
number of ensemble forecasts can be run. As Leith (1974) showed, hedging the forecasts
* toward climatology cagiean give an additional improvement in some measures of forecast skill

. l. beyondthatattainedby ensembleaveraging. Inthis paper(except in section 6.4 wherethe
effect of spatial smoothing is studied) we restrict our attentionto the impact of ensembleaveraging'. -
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3. ERRORS IN THE ANALYSIS

It is clear that with the initial ensemble perturbations we must represent accurately
the probability distribution of the state of the atmosphere about our bestestimate of the true
state of the atmosphere, the latest control analysis. -The shape of this probability
distribution will depend on what kind of errors we may have in the control analysis. The
more likely an error pattern, the higher probability we should assign to the control analysis
plus and minus that particular error pattern. This calls for a careful examination of possible
analysis errors.

3.1 Random and Growing Errors

A typical operational analysis performed with Optimal Interpolation or Spectral
Statistical Interpolation (see,'e.g., Lorenc, 1982, Parrish and Derber, 1992), is a weighted
average of (1') observational measurements and (2) a short-range dynamical forecast (first
guess), started from the preceeding analysis.' It has been long recognized that the resulting
analysis is affected by random errors present in observations. Recently it was also pointed.
out that the repeated use of a model forecast as a first guess has a profound dynamical
effect on the errors in the analysis (Toth and Kalnay, 1993; Kalnay and Toth, 1994). 'The
analysis cycle can be considered as the running of a nonlinear perturbation model upon the
true state of the atmosphere. The perturbation amplitude (i.e., the analysis error) is kept
small by periodic "rescaling", performed at each analysis time, through the use of limited
observational data.

In Such a nonlinear perturbation setup, it is inevitable that the random errors
introduced at each analysis time will project onto growing modes of the atmospheric flow at
later times. This is because the growing components of the error, by definition, rapidly
amplify while the decaying components quickly lose thei'r amplitude in the short-range, first
guess-forecast (see section 4. 1.) 'And since the observations underdetermine the state of
the atmosphere, these dynamically developing errors cannot be removed at the-next
analysis time: their amplitude can only be reduced (see, e.g., Fig. 9 of Bouttier, 1994.) Soat
the start of the next short-range forecast in the analysis cycle, dynamically developed
errors are present in the initial conditions ready to amplify again. In other words, the
analysis contains both random errors introduced by the most recent observations, and
growing errors associated with the instabilities of the evolving flow, dynamically generated
(from earlier introduced random errors) by the- repeated use of the forecast first guess. -

3.2 Which Type of Error is Imp)rtant?

If we could follow the development of the errors present in the analysis, we would
see that random errors, introduced just at the latest analysis time by observational
inaccuracies, will decay initially before projecting, after one or two days, onto growing
modes of the evolving basic flow. Such an initial decay was apparent in early experiments
in atmospheric 'predictability (see, e.g., Fig. 4 in Smagorinsky, 1969.) Even if the random.
errors are balanced, they will still initially grow very slowly or decay. By contrast "growing
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errors" will, by definition, amplify 'rapidly, so that they are primarily responsible for
short-range error growth. This means that even though the growing errors constitute only a
portion of the total control analysis error field, their contribution is dominant in the forecast
error development. Therefore one should focus on the growing errors when creating
ensemble perturbations..

Another difference betweenrandom and growing errors is that the dimension of the
space of possible random perturbations is extremely large, of the order of the number of
degrees of freedom of the model, whereas the dimension of the phase space of fast
growing perturbations isvery much limited bythe local (in the phasespace) dynamicsof the
atmosphere. Since the full phase space of the random component of errors cannot be
sampled well, 'random perturbations may actually degrade the quality of the ensemble by
projecting, at a later time, on growing modes that were not initially.present as analysis
errors. This explains why ensemble forecasting can never be as successful with random
perturbations as with estimates of fast growing errors that are possibly present in the
control analysis (see-section 6.8.)

4. LOCAL LYAPUNOV VECTORS AND THEIR ESTIMATION THROUGH BREEDING

Since the important, growing component of, the analysis error occupies only a
relatively small subdomain in the phase space, and it depends on the basic flow, it-is
possible to compute estimates of possible growing analysis errors through dynamical
methods.

4.1 The Breeding Method

Forthis purpose, Toth and Kalnay(1993) proposed a method called breeding of the
growing modes of the atmosphere (BGM). This procedure consists of the following simple
steps: (a) add a very small, arbitraryperturbation to the atmospheric analysis (initialstate)
at a given day-to (or to any other' basic state, such as a long -model run), (b) integrate the
mrodel from both the perturbed and unperturbed initial conditions for a short period t -t-
(e.g. one day), (c) subtract one forecast from the other, and (d) scale down the difference
field so that it has the same norm (e.g., rms or rotational kinetic energy) as the initial
perturbation. This perturbation is now (e).added to the analysis'corresponding to the
following day to, and the process (b)-(e) is repeated forward in time. Note that once the
initial perturbation is introduced ,in step (a),.the development of the perturbation field is
dynamically determined by the eyolving atmospheric flow. '

By construction, this method "breeds"' the modes thatgrow fastest on the trajectory
taken by the evolving atmosphere in the phase space. One can decompose the initial
perturbation P(to) into growing and decaying components. Let us consider the
development of a small perturbation on top of a nonlinear model trajectory (i. e., the
difference between two 'nonlinear forecasts.) At the.end ofa short-range integration, by
definition, the relativecontribution of the growing component will be larger, while that of the
decaying component smaller than at initial time. And after a few cycles, the decaying
component will become negligible. :: : ' ' .
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Note the similarity between the breeding method and the analysis cycle: in both
cases, a nonlinearperturbation model is run with regular rescaling. In case of breeding, the
perturbation is run over the analyzed states. The perturbations are defined with respect to
the analysis and .then rescaling is done in.a deterministic fashion, so that stochastic (or
decaying) components are eliminated from the perturbations, as discussed above. The
resulting perturbations are determined purely by the dynamics of the system. On the other
hand, the analysis cycle is run based'on observed data. The perturbations here can be
defined as the difference (error) between the analysis/first guess and the true state of the
atmosphere (which is unknown to us.) In the first guess short range forecast, the growing
components of this error will still amplify. However, at the next analysis time observational
data will be used to reduce the difference between the analysis and the true state of the
atmosphere. The observed data contains random noise which will be periodically
reintroduced into the analysis. Consequentlythe errors present in the analysis, beyond the%
growing error connected to the use of short range forecasts as first guess fields, also
contain a random or stochastic component.

4.2 Lyapunov vectors

Theoretically, the bred perturbations are related to the local Lyapunov vectors
(LLVs) of the atmosphere. The Lyapunov exponents (A) have been widely used for
characterizing the behavior of simple dynamical systems:
Ai = limt:O 1/t log2 [pi(t)/pi(0)] (,3)
where p is a linear perturbation spanning the phase space of the system with orthogonal
vectors. Note that while the first Lyapunov exponent is uniquely defined at least for
Hamiltonian systems, the rest of the spectrum is derived via a periodic reorthogonalization
of the perturbation vectors (see, e. g., Benettin et al., 1980) and hence will depend .on the
frequency of reorthogonalization. The1i's can be.computed either for the whole attractor
(global Lyapunov exponents) or can be interpreted point-wise, where the growth ratio is
evaluated for an infinitesimal time interval at.t (local Lyapunov exponents, see, e. g.,
Trevisan and Legnani, 1995.) The leading Lyapunov exponents are.associated with

* ' predictability properties of dynamical systems, namely howfastnearbytrajectories diverge
(or converge) on the attractor. Most importantly, if a system has at least one positive global
Lyapunrov exponent, its behavior is chaotic, i.e. arbitrarily close points'on the attractor will
eventually separate into unrelated points (Wolf et al., 1985.).

When the Lyapunov'.exponents are interpreted locally, each of them can be
associated with a perturbation vector, I:, The first of these vectors, with the largest
exponent, can be uniquely determined and represents a perturbation at timeto, into which
anyrandomperturbation introduced infinite time earlier, develops linearly. The importance
of this property of LLVs in meteorology was first recognized by Lorenz (1965), who found in
his experiments with.a simple linear perturbation model'that initially random perturbations
had a strong similarity after eight days of integration. Indeed,. our breeding experiments
with a state-of-the-art general circulation model indicate that one needsonly a fewdays of .-
integration (3-4 days) n order to get a good estimate of the leading'iocalLyapUnov vectors ..
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of the atmosphere. These LLVs are the vectors that grew asymptotically fastest during a
time period leading to the analysis. Hence they are likely to dominate growing analysis
errors and, because of their sustainable growth, also the forecast errors.

4.3 Extension of Lyapunov characteristics into (he nonlinear domain

There is an extensive body of literature on the global, and more recently, onthe local
Lyapunov exponents of simple dynamical models. These studies, however, use a linear
tangent model approach and are concerned only about error growth. in a linear sense. In
some studies, a regular rescaling of the perturbations, also used in the breeding method,
has been applied. Rescaling in. these linear methods, however,.is used to avoid computer
overflow, not to prevent nonlinear saturation (see, e.g., Benettin et al., 1976; Shimada and
Nagashima, 1979.) New aspects of the breeding method as proposed by.Toth'and Kalnay
(1993) are that perturbations are developed for a (1) complex physical system in a (2)
nonlinear framework at a (3) high horizontal and vertical resolution, and that it is (4) the
perturbation vectors (and not only the exponents) that are studied and used for real world
practical applications.

Nonlinearity plays a crucial role in complex systems where a host of different
physical processes, associated with widely different growth rates and nonlinear saturation
levels occur. A traditional linear approach may find the strongest instability of the system
(say, convection) but this may be associated with processes with a'very low nonlinear
saturation level. For finite perturbation amplitudes these modes.would thus/be irrelevant
and may even decay. Hence the bred modes can be considered as an extension of the
notion of LLVs into the nonlinearperturbation domain. Note that the perturbation amplitude
is the only free parameter in the BGM method 'and that-the bred modes, just as the linear
LLVs, are not sensitive to the type of norm used for rescaling.

Another new aspect of the breeding method is that local Lyapunov vectors, not only
global Lyapunov exponents, are- estimated. This results in the first computation of the
leading local Lyapunov vectors of the atmosphere with a comprehensive nonlinear
perturbation model including all physical parameterizations.

4.4 Multiple Breeding Cycles

When a breeding cycle is started, an arbitrary initial perturbation field is added upon
the control analysis. After three or four days of breeding, most of the originally decaying
components in the perturbation disappear and the perturbation growth rate reaches an
asymptotic value around 1.6 perday (with a perturbation amplitude of 1% in total
climatological rms variance.) After this time, the perturbations that remain are those that
could produce the largest growth over the preceeding 3 days or so, given the initial
perturbations. As seen from Fig. 2,.the growth rate in a breeding cycle depends on the

.amplitude of perturbations but is always larger than that obtained with other perturbation
-methods such as Monte Carlo; Scaled Lagged Averaged Forecasting (Ebisuzaki and

Kalnay,.1991) ordifferencefieldsbetweenshort range forecasts verifyingatthesame time.
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The growth rate and the' shape (not shown) 'of the perturb'ations are largely
independent of the rms amplitude in the range. of about 1 -10% of the natural rms variability
However, if the perturbation amplitude is reduced to less than 0.1% rms variance, then the
growth rate increases enormously, with an amplification factor well above 5 per day. This is
because the fastest growing modes in the model atmosphere are, in fact, convective
modes (see Fig. .3), not baroclinic modes. The convective modes, however, saturate at
much smaller amplitudes than the estimated size of theanalysis errors (5-10% of the rms
of the natural variability). The modes associated with convection arealso present at larger
perturbation amplitudes but are not detectable because they saturate-'at amplitudes much
smaller than those of baroclinic instabilities. This also explains'why convective modes are
not-dominant analysis errors.

Since breeding is a nonlinear process, the perturbations in the 1-10% rms variance
range, though primarily determined by the dynamics-of the system, also depend to some
extent on the perturbation at previous times, namely on how those perturbations project on
certain growing modes, and on the small scale forcing convection provides to th elarger
scales. This forcing (see Fig. 3) is largelystochasticwith respectto the baroclinic processes
that dominate perturbation development in the amplitude range of 1-10% rms variance. If
we start independent breeding cycles with. different arbitrary initial perturbations, we find
*that. after a transient period of about 3 days, the perturbations in the different cycles are
quite similar (except for their phase, and to some extent, their amplitude, which' are
arbitrary) but only over roughly half of the global domain. Table 1 shows the. results
obtained using twenty independent breeding cycles. The local shape of the perturbations
were compared to those observed in the perturbation #17 overthree selected regions in the
Northern and the Southern Hemispheres (see Fig. 4.) A +, -or a blank indicate whetherthe
same perturbation was observed with the same or opposite sign, or whether a different
perturbation'was observed2 .

In the areas where the perturbations are very similar, the largest Lyapunov exponent
must have a value much larger than the succesive Lyapunov exponents. Over the rest of
the domain, different modes appear in the independent cycles, suggesting that the first few
Lyapunov vectors have similar growth rates, and the appearance of one or another in any
cycle'depends on-the details of perturbation evolution in that cycle a few days earlier and
also on the details of instantaneous stochastic forcing'(convection).'

From the above experiments it is clear that each global perturbation pattern is a
superposition of a number of regional features or modes, perhaps of the order of 10-20 in
each hemisphere, which, in turn are primarily associated with baroclinically unstable
regions of the evolving basic flow. And as the basic flow has many degrees of freedom, so
does the global perturbation field. It follows that the. phase and amplitude of the regional
modes (and in case there are competing modes with similar growth rates, the'modes
themselves) in one area are independent-of those in remote areas. This insures that the

2When the same comparison is.made with bred perturbations valid on different dates,
even as close as 2 days apart, there is almost no correspondence among the modes, showing
that the growing modes crucially'depend on the basic flow and its 'recent evolution.
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bred global perturbations from independent cycles are quasi-orthogonal, without imposing
anyconstraints.

In-summary, a bred global perturbation is a superposition of regional modes, each of
which is a combination of the leading local (in phase space) Lyapunov vectors in that area of

. the atmosphere. The weights on the individual local Lyapunov vectors are randomly
assigned by the arbitrary initial perturbation and the stochastic small scale forcing but are,
in a statistical (ensemble average) sense proportional to the Lyapunov exponents
themselves. The bred perturbations are therefore not unique in a strict sense but onlyin a
statistical, ensemble average sense. And the more independent breeding cycles we have,
the better we can span the' space of possible fast growing analysis errors. Nonlinear
breeding hence can be considered as a generalization of the notion of Lyapunov vectors for
complex nonlinear systems. Because of nonlinear interactions and stochastic forcing by
convection, and' because of the existence of many regional. modes, different breeding
cycles'do not converge to a single leading LLV but rather span the subspace of fast growing
perturbations that dominate error growth at the amplitude of the size of the perturbations.

4.5 Optimal perturbations and Lyapunov vectors'

There is another method to determine fast growing modes of dynamical systems.
This linear method uses the lineartangent and adjoint of a full model to compute the initial
perturbations that grow fastest over a specified period, measured with a given norm
(Lorenz, 1965). In its application'to ensemble forecasting at ECMWF (see, e.g., Molteni et
al., 1995), the fastest growing perturbations are determined for a 36-hour forecast
trajectory created by the full model. The optimal vectors (which are also calledthe singular
vectors of the linear propagator) are those that amplify most over the optimization period,
given the norm and other possible constraints. We briefly compare the LLVs with the
optimal vectors and their respective use for ensemble forecasting at NMC and ECMWF.

4.5.a Theoretical considerations
In a linear framework,'all perturbations introduced into'a dynamical system will with

time rotate into the direction of' the LLV. This explains why the leading LLVs play such a
crucial role in linear, perturbation development. The local Lyapunov exponent associated
with the leading LLV characterizes the fastest "sustainable" growth; faster growth can exist
only for short periods of time.' It follows that the LLV does not depend on.any norm or other'
specifications; it is a general property-of any.dynamical system.

The leading optimal vectors represent specific directions in the phase space in
which perturbation growth is higher than that associated with the LLVs. The super-Lyapu-
nov (or super-exponential) growth, however, 'cannot be sustained for long since it results
.from a one-time rotation Of the initial vector into the direction of the leading LLVs. The opti-
mal vectorcan. be decomposed into two components: one along, and one perpendicular to
the leading LLV. At any moment during the development of the optimal vectorthe instanta-.
neous growth along the perpendicular direction is lower than that along the LLV The su-
per-Lyapunov growth is associated .with a dramatic rotation of the perpendicular vector to-



ward the LLV which results in an "apparent" extra growth (Szunyogh et al., -1995).
In contrast with the LLVs, the optimal vectors strongly depend on the specific choice

of norm, optimization period and possible other constraints chosen fortheir definition (Vuki-
cevic and Errico, 1990), indicating that they are much more particularfeaturesof a system
than the LLVs.

4.5.b Sources of super-Lyapunov growth 
Super-Lyapunov (or"super-exponential.") growth has been documented in several

modeling studies (e. g., Schubert and Suarez, 1989; Royer et al., 1993.) As pointed out by
Lacarra and Talagrand (1988) and Farrell (1988), super-Lyapunov growth can result from
an initial optimal vector being introduced into-a.system. Recently, however, other explana-
tions have also been suggested. First, the local Lyapunov exponent varies on the attractor
and often assumes values well above the global Lyapunov exponent (which is an integral
quantity over the whole attractor), thus leading to veryfast growthfrom time to time (see, e.
g., Vannitsem and Nicolis, 1994.) Moreover, Trevisan (1993) showed that the logarithm of
arithmetically averaged'different local growth'rate values results in an apparent super-ex-
ponential'average growth. This super-Lyapunov growth is a result of first averaging differ-
ent local growth rates and then taking the logarithm of the average (and it disappears when
another average error definition is.used in which the local logarithm values are averaged
directly.) Note that even in the absence Of perturbations along the optimal vectors,.the arith-
metic averaging of the local Lyapunov exponents yields a super-Lyapunov growth rate. As
Nicolis et al. (1995) showed for a three-variable Lorenz(1 984) model, this apparent super-
Lyapunov growth can be readily explained by the impact of the variability of the LLVs on the
attractor within the averaging process.

4.5.c LLVs and optimal vectors as analysis errors
Forthe application of the LLVs or optimal vectors in ensemble forecasting one has to

consider whether they represent possible (and probable) analysis/forecast errors. Kalnay
and Toth (1994) showed that the bred modes are present inthe analysis as errors with a
considerable amplitude. This should be expected since any kind of error introducedinto the
analysis cycle, uriless completely removed, would rotate into the direction of the bred
modes, due to the dynamics of perturbatin development described above. We recall that
the bred modes are an extension of the linear LLVs, toward'which all perturbations 'rotate
within a few days.

The optimal Vectors, however, would not similarlyarise through the dynamics of the
system as analysis errors. They can be introduced into a system. only through special forc-
ing, which, in case of.the analysis cycle, requires a special kind of distribution of random
observational'errors. And since the number of degrees of freedom in the atmosphere (and
in its general circulation models) is very high, and the number'of fast growing optimal-vec-
tors is very limited, we believe that. it is unlikely that a random error pattern would have a
strong projection on the leading optimal vectors. The results of Ehrendorfer and Errico
(1995), who'considered an extended spectrum of optimal vectors in a limited area modei,
seem to support this conjecture. They found that only a small fraction of the leading optimal.
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vectors have growth rates higher than one. It follows that random perturbations would proj-
ect poorly on the leading optimal vectors. This is also true for the leading LLVs. However, in
a perturbation model like the analysis cycle'random perturbations, by definition,'would nat-
urally rotate into the direction.of the'leading LLVs but not toward the'leading:optimal vectors
(which can arise only through special forcing.)

The statement that the optimal vectors are not likely analysis errors may seem to
contradict the results of Rabier et al., 1994. They searched for the initial vector that maxi-
mizes perturbation growth projecting at final time onto the 48-hour forecast error pattern.
Theyfound that the initial vectorthat maximizes growth in that special direction has charac-
teristics similarto the optimal vectors. Note, however, that Rabier etal. (1994) solve a prob-
em very similar to (but more specific than) the general (or unconstrained) optimization
problem of Molteni etal(1995): Thefinal perturbationvector(48-hour errorpattern) actsas
an-additional constraint in the same. optimization problem. Given the dependence of.the
optimization on the choice of norm, it is not surprising that the resulting initial "sensitivity"
patterns of Rabier et al. (1994) have a similar structure to the optimal initial perturbations
used for ensemble forecasting at ECMWF (Molteni et al., 1995).

We note again that the sensitivity patterns (and also the optimal vectors) are not
unique in the sense that they depend on the norm used in their definition. 'In other words,
there isno unique way of going back in time in.a dissipative chaotic system like the atmo-
sphere. In fact, very different initial vectors may yield similar end perturbations, as dis-
cussed already above with respect to the leading LLV (see also Zupanski, 199,5.) The influ-
ence of the norm, on optimal/sensitivity patterns is also apparent in.the results of Oortwijn
and Barkmeijer (1995). Oortwijn and Barkmeijer-.(1995) used an optimization technique

- similar to that of Rabier et al. (1 994) except that theirfinal target perturbation patterns were
anomalies associated with weather regimes. They found that the initial perturbations opti-
mally triggering those anomalies were, to a large extent, combinations of the leading un-
constrainedoptimal vectors. Their results suggest that no matter what the exact target per-
turbation pattern is at final time, once the norm is fixed, the initial optimized perturbations
will have a large projection on the-leading unconstrained-optimal vectors that can produce
the fastest temporary growth through the special rotation of their component vectors in
phase space.

In short, since the optimal/sensitivity patterns' are not.unique and'they depend on the
norm used, the question whether they project on actualanalysis/forecast errors can only be
tested through the use of high quality observational data. -

4.5.d Practical aspects
There are several practical differences between the breeding and the optimal vec-

tors methods as used at NMC and ECMWF respectively. (1) Computational efficiency: the
adjoint technique is very expensive whereas breeding is essentially cost-free, apart from
running the ensemble forecasts themselves (see Fig. 5.) (2) Spatial resolution: breeding
can be performed at full resolution while forthe optimal perturbations technique this is com-
:: 'I-putationally impractical. (3) Breeding is performed with the ful lnonli'near model with physics
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while the optimization is currently done with a tangent linear system with limited physical
parameterizations. (4) Spatial coverage: the'fastest optimal perturbations cover only a
small fraction of the geographical domain with relatively large amplitudes and only over the
NH (see Fig. 3.d, e,f in Molteni et al., 1995), while with breeding, the fastest growing regional
modes are automatically determined for the whole globe (including the tropics and the
Southern Hemisphere), and not only for those regions with highest growth rate. (5) The
optimal vectors are determined for a forecast trajectory, so that to the extent the forecast is
not perfect, the modes determined will be sub-optimal. In contrast, the LLVs, which provide
the fastest sustainable growth for the futures depend only on analyzed data.

5. ENSEMBLE PERTURBATIONS 

From the discussion about LLVs above, one could draw the conclusion that it does
not really matter what initial perturbations' are used 'for medium- or-extended-range
predictions since all linear perturbations turn into very similar vectors after a few days of
integration. However, one should keep in mind that'ensemble forecasts, just as the control
forecast, are nonlinearintegrations. With a perturbation size similar to the estimated size of
errors in the analysis, nonlinearity becomes important afterabouttwo days, and earlierthan
that in fast developing synoptic systems. It follows that in the ensemble perturbations, we
still need to represent realistically the initial uncertainty in the analysis, otherwise, as
discussed in section 2, our ensemble will be suboptimal.':

In this section we discuss several additional technical points aboutthe breeding
method which were investigated in the process of implementing operational ensemble
forecasting at NMC.

5.1 Regional rescaling

The breeding method was.originally'used at NMC with hemispherically determined
rescaling factors (Toth and Kalnay, 1993). Depending on the hemispheric rms magnitude
of the perturbation, a constant factor was applied over each hemisphere'and a linearly
interpolated value was used in the tropics in the rescaling. While this method is very good to
study the instabilities of the atmosphere as they are represented in our numerical models, it
may not be optimal for ensemble forecasting.. The perturbations should reflect not only the
shape, but also the size of analysis errors. Consequently, we want'to have larger regional
perturbation amplitudes in regions sparsely observed, and vice versa.' With
hemispherically fixed rescaling, the perturbation amplitudes will be largest in the areas of
strongest instabilities. While these areas are generally over the poorly observed oceans,
they do not necessarily correspond to the regionally dependent uncertainty in the analysis.

To estimate the geographically dependent uncertainty in the analysis, we ran two
independent analysis cycles for a 30-day period in'April-May, 1992. The cycles were

_

3Note that dynamical systems behave continuously in time. The LLV reflects this time
continuity:L Whatever vector provided the, maximum sustainable growth over the segment of
trajectory leading to currenttime, will provide the maximum growth forthe future, too. -..
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identical except that in one of them thefirst guess field was an ensemble average of two first
guesses, perturbed by bred modes with positive and negative signs. The two analyses
gradually diverged from each other until, a few days. later, the difference'saturated. Beyond
this time, we took the average of rms difference fields between corresponding pairs of
analyses. The -500 hPa average'difference field in the streamfunction, scaled so that the
global average is one, andsmoothedwith a Gaussian filter on a sphere (Jim Purser4 , pers.
comm., 1993) equivalent to T6-T7 (about 2000.km) resolution, is shown in Fig. 6. Over the
Northern Hemisphere, the dominant features of the analysis uncertainty field are the

minima over North America and Eurasia, especially over the eastern part of the continents,
and the high yalues over the Pacific ocean. This corresponds well to the good rawinsonde
coverage over the continents. Due to the use of dynamical first guess, theinformation from
the observations is "transported" eastward, resulting in minima over the eastern. part of the

continents.
While there is a hint of a similar behavior in the Southern Hemisphere east of Africa

and over eastern Australia, there is more zonal symmetry, and the amplitude of the
uncertainty increases poleward. Such behaviour is also consistent with the uniform
observational coverage provided by satellite temperatures and by'the fast growth of
perturbations in the strongly baroclinic southern high latitudes.

Note that with the above procedure, we can estimate the amplitude of growing errors
in the analysis, which, as we discussed in section 3.2, areassumed to be more important in
ensemble forecasting. Optimal Interpolation (01) could also be used to, estimate'the
distribution of the analysis errors (Gandirn, 1963), but such estimate is very dependent on

the assumed error covariances for the forecast and the observations. In addition, the 01
estimate would not properly account for the growirng component of the error. Therefore we
believe the 01 estimate would be'less reliable than the empirical procedure we have used

here.
In a breeding cycle specifically modified for ensemble perturbations, we determine

the scaling factor as a function of. horizontal'location. The perturbation amplitude is
measured and rescaled regionally. in a smooth fashion, to a level corresponding to-the
values shown in Fig. 6.' At points where the perturbation amplitude (globally scaled to. 1) is
below that in Fig. 6, no rescaling is applied. So a perturbation traveling into a poorly
observed oceanic area is allowed to growfreely, while those reaching a well observed area
are scaled back to the size of the estimated analysis error. Since the regional rescaling is
done in a smooth fashion, most.of the balance naturally presentin the bred perturbations is

preserved. With regional rescaling we still retain the capability of changing the overall
global or hemispheric amplitude but the. smoothed relative geographical distribution is left
intact.

Medium-range ensemble forecasts performed with the breeding method modified
for regional rescaling showed an improvement in skill over the Southern Hemisphere and

4By using this spectral filter we avoid the 'aliasing problem'associated with simple

truncation in wavenumber space. Different filtering characteristics are described in terms of
equivalent'. triangular truncation. - :
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the tropics (compared to the hemispherically rescaled perturbations) while there was no
change over the Northern extratropics. We also tested applying the regional rescealing
outside. of the breeding cycle, to modify only the initial ensemble perturbations, but found
that larger changes were necessary after each cycle and that the forecast results were not
as good.

5.2- Centering the ensemble around the control analysis

Since our bestestimate'of the true state of the atmosphere isthe control analysis, we
must center the ensemble perturbations around'this field. This can-be easily done by
adding and subtracting the same perturbation to the control analysis (e.g., Ebisuzaki and
Kalnay, 1991). In this setup, 2n perturbations are derived. from n independent breeding
cycles (or from other orthogonal vectors.) "However, a case can be made for using each
perturbation only once, thus possibly improving sampling (J. Purser, pers. comm., 1992.)
We tested this hypothesis by averaging 2n independent perturbations and then removing
their average from each individual perturbation vector. The resulting medium-range
ensemble integrations, however, h[ad a significantly.inferior forecast skill as compared to
.the identically sized paired ensemble setup:-the improvement upon the control forecast
obtained with the centered single perturbations was less than two thirds.of that obtained
with the ensemble of positive and.negative pairs of perturbations (see Table 2.) This result-
underlines the inherently nonlinear nature of ensemble forecasting. The implication is that
the nonlinear ensemble filtering rmnechanism discussed in Section 2 is not as-effective if the
perturbations, though centered initially in a linear sense, are not paired.

6. ENSEMBLE FORECASTING RESULTS

In this section we will give an overview of ensemble forecasting experiments
performed in order to test possible operational configurations. All experiments were done
with a T62/18 levels version of the NMC MediumRange Forecast (MRF) model (Kanamitsu
etal., 1991). Theperiod used intheseexperimentsisthe40 daysbetween6 May 1992and
14 June 1992 (or a subperiod of it, where noted).; Unless mentioned otherwise,
1 0-member ensemble forecasts are evaluated. The initial ensemble perturbations were
derived from 5 independent breeding cycles with regional rescaliring. To center the ' '
ensemble mean on the control analysis at initial: time, each of the five perturbations was
both added to and subtracted from the analysis. The quality of the ensemble forecasts is
estimated using two measures: the skill of the ensemblemean forecast and the spread of
the ensemble.

6.1 Measures of ensemble quality

At any lead time, members of the ensemble can be averaged. The mean ensemble
'forecast is then verified against the corresponding analysis much the same way as the
control forecast. ' As a. measure of skill, we use the forecast/analysis pattern anomaly-:
correlation (PAC) measured over-.three separatetbelts over the globe:; the northern and . ...
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southern hemisphere extratropics'(20-800 latitude belts) and the tropics.(+/- 20° latitude).
All scoresare computed for the streamfunction field at a sigma layer close to the 500 hPa
height level. To compute the anomalies, the observed climatology is used. RMS errors
were also computed but are not reported here because they led to identical conclusions as
the PACs. Forecast PACs for different types of ensembles are compared to those for the
control forecast to see if .they represent an:improvernhent due to nonlinear ensemble
filtering.

'The spread of the ensemble is determined as the average of the difference fields
between the individual ensemble forecasts and the ensemble mean. The difference at
each grid point is defined asthe square root of the kinetic energy in the difference (or error)
field. The spatial distribution of'the spread is considered as a prediction for the spatial
distribution of the actual error in the control forecast, which is measured in the same way, in
units of square root of kinetic energy. After setting the mean of both the forecast spread and
observed error fields to zero, their correlation -is computed (spread/error PAC.)
Spread/error PACs arecomputed only in the T3-.T15 range of equivalent spatial resolution
using the spectral filter mentioned above (Purser,. pers. comm.). Time correlations
between spread and error statistics are also computed (in which case the spatial mean of
the spread and error fields is not removed.)

6.2 Size of the initial perturbation

In the section on regional rescaling (5.1), we indicated that the. overall size of the
initial perturbations is an important parameter that has to be-chosen to reflect the size of
initial error in the analysis. An estimate of the analysis error can be derived from optimal
interpolation analysis techniques (see, e.g., Gandin, 1963, Buizza, 1994.) However, since
these estimates are subject to the statistical approximations made within the analysis
scheme, we attempted to optimize theoverall perturbation size experimentally by verifying
ensemble means.for. ensembles initiated with different initial amplitudes for the.bred
perturbations. The perturbation size is measured. on the -500 hPa streamfunction'field.
We note that the wintertime NH natural rms variability of the streamfunction field is around
8500000 m2 /sec (while it is around 80 m for geopotential height.)

To estimate the optimal size of the initial. perturbations, we performed tests with
differentvalues between 3 and 20% of the NH wintervariabilityforthe NH and 6 and 40%.for
the SH respectively, and recorded the skill score.for the mean of the different ensembles.
Since at T62 resolution much of the small perturbations develop linearly in the first 24 hours
time range, the ensemble mean of perturbations equal to or less than 10% of the rms
variance (standard deviation) is not appreciably different from the control at one day.
Though at this short lead time the skill of the ensemble mean cannot be directly used to
determine the optimal perturbation size5, it is important to note that perturbed forecasts with
10% initial "error"for the NH and 20% for the SH diverged from the control as much as the

5 The signal is hard to detect because the errors in the verifying analysis are not much
smaller than the short-range forecast errors. Had we used observational data for verifications
instead of analysis fields, we may have been able to find a signal even at veryshort range.
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control forecast diverged from the verifying analysis (not shown), suggesting that the
optimal perturbation size is around this magnitude. This agrees well with other estimates
for the error in global analysisfields. Kalnay et al. (1993) found that the difference between
independent 500 hPa height analyses from various centers is between 7 and 16 m for the
NH and between 12 and 18 m for the SH. P. Caplan (1994; personal communication)
estimated differences in the same range, with the SH uncertainty being about double of that
for the NH. These estimates, along with other informationsuch as improvement in forecast
skill suggest that the quality of our atmospheric analysis has been considerably improved
since the mid 1980's when Daley and Mayer (1986) estimated the global analysis error to
be between 15 and 20 m at 500 hPa.

In Table.3 we.show the results of using different perturbation sizes for day 3 to 9,
comparing them with perturbations of size 10%forthe NH and 20% forthe SH. We find that,
for the NH, at day 3 an amplitude of 7.5% is slightly better than 10%, whereas at day 9,
1 2.5% is better. This increase in the optimal initial size with forecast length is also observed
in the SH: at day 3 a-size of about 25% is better, whereas at day 9 a size of 30%. is more
effective in increasing the skill of the ensemble average.

In a perfect mode[ environment, the optimal perturbation size should not depend on
lead time. However, our models are imperfect, which means that forecast errors are
growing not only due to the initial difference but also due to model deficiencies (Reynolds et
al., 1994)'. Part of the model generated errors project on growing modes and act like,
amplifying errors due to the initial uncertainty, whereas others appear as a forecast bias.
The model errors that project onto growing modes can be dealt.with, to some extent, as an
extra amplitude term in the initial error field, explaining why the optimal perturbation
amplitude increases slightly with increasing leadstime.

Based on the above results we have fixed the initial amplitude of perturbations in the
remainder of this study at 12.5/25% rms standard deviation for the NH/SH respectively.
Note that this amplitude is larger than optimal for short lead times but is around optimal for
the medium and extended range. 

6.3: Ensemble mean forecasts-
Fig. 7 shows the PAC scores for the control and ensemble mean forecasts for the

experimental period. First we should note that.ensemble averaging has a greater impact
over the winter (in this case the SH) than over the summer hemisphere. This is the case
probably because in winter, baroclinic disturbances are the sole major source of
instabilities. These instabilities have a relatively long life cycle (few days) and a large
saturation amplitude; Consequently, baroclinic instabilities-are directly responsible for a
large portion. of. wintertime forecast errors. And since at T62 resolution these instabilities
are well resolved, the ensemble based' on these perturbations is very effective in filtering

'out part of the forecast errorthat is dueto initial erroruncertainty. In contrast, the circulation
in the summer is more "local" in nature, both in space and time. This is also reflected in the
fact that the summer circulation has more spatial degrees of freedom (see, e. g., Fraedrich
et al., 1995.) Beyond large scale dynamics, it is also strongly influenced by convection;
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which has ashorter lifetime and smaller saturation amplitude. It followsthat a larger portion
of the total error.is left unexplained by baroclinic instabilities. As a consequence our
ensembles based primarily on baroclinic instabilities cannot provide as much improvement
in skill in the summer as they can in the winter.,

As can be seen from Fig. 7 the skill for the control and ensemble mean at day 1 are
practically identical when verified against the control analysis. (see also footnote 5).
However, beginning day 2 the ensemble mean develops an advantage. over the control
forecast that becomes appreciable by day 3 and reaches a substantial 0.07-0.11 by day 9.
If we consider 0.5 PAC as the minimum level of useful skill, ensemble forecasting extends
predictability by a day or so, out to 8 days over the NH and 7 days over the SH and the
tropics. Note that the improvements from ensemble averaging are as large in the'tropics as
they are over the summer hemisphere extratropics.

The gain from ensemble forecasting in the medium and extended range compares
favorably with the increase obtained by doubling the horizontal resolution: At day 5, the
difference between the scores obtained using the NMC operational T126 model and a
nearly identical, "parallel" T62 system is slightly below 0.02, averaged over 32 months of
operations. The gain obtained by ensemble averaging with 10 members over the 40-day
experimental period is substantially larger, although both procedurestake about the same
computer time. We should point out that increasing the resolution of global NWP models
has a clear benefit during the. first few days. of a forecast. (Tracton and 'Kalnay, 1 993).
Running ensembles at a lower resolution, however, has a substantial advantage for the
range beyond 5 days, where nonlinearities become important. We mention.here that
ensemble forecasting can also be beneficial fo.r the shorterrange, as long as the nonlinear
aspects of the flow are relatively well modeled and analyzed' (see Brooks et al., 1995.)

6.4 Ensemble averaging vs. spatial smoothing

It might be argued that the gain in skill from ensemble averaging may be dominated
bysmoothing resultingfrom averagingthedifferent perturbedforecasts. Fig. 8ashows the

.verifying analysis for a 9-day forecast started from 30 May'1992. A comparison of the
control forecast (8b) with the'.10-member ensemble average forecast (8c), and their
corresponding errors (8d and 8e respectively) suggests that ensemble averaging does
indeed have a smoothing effect. It is more appropriate to call this effect "filtering', sinbe it
depends on the flow, particularly upon the varying degree of similarity amongst the
ensemble members. Ensemble'averaging results in a selective smoothing of those

'features that cannot be forecast with certainty.. Consider, for example, the forecasts in Fig.
8 over. North America. The trough over the SE US is well predicted by the control and is
hardly changed by the 10-member ensemble mean. The Southern portion of the 'trough.
predicted over the West coast, however, did not verify. The ensemble mean filtered out part-
of this system, resulting in smaller overall errors in- this region. Undoubtedly, there are

. ._several other'areas/caseswhere the changes in the.ensemble mean do not verify .well but
-overall,' it still' provides an improvement over the single control forecast.
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To quantify how much of the improvement due to ensemble averaging is connected
to simple spatial smoothing (as compared to nonlinearfiltering), we performed experiments
where both the control and the ensemble mean forecasts were spatially smoothed till they
reached their maximum PAC verification scores. The results, presented in Table 4, show
that not much smoothing is needed to maximize the scores in the extratropics. Even at 9
days lead time,.a truncation of T20 has to be retained in the control while, as expected, the
ensemble average requires somewhat less smoothing. In the tropics (not shown). no
amount of smoothing improves the scores. The main result here is that the ensemble
average retains a considerable advantage (more than 60%/) over the control even after both
fields had been optimally smoothed.

6.5 Forecast of the spatial distribution of the errors

Ensemble forecasting. should offer more than an -improved best estimate of the
evolution of the atmosphere (ensemblemean forecast.) It shouldalso provide-the means to
estimate'higher moments, and ultimatelythe full probability distribution of the forecasts. A-
first step in achieving this goal is the derivation of an estimate of forecast reliability in the
spatial domain. Ideally, we would.like to know in which areas errors are'. more likely. We
have used the spatially smoothed ensemble spread of the kinetic energy introduced in
section 6.1 for estimating the magnitude of the expected forecast errors. Figs. 8f and g
show, for the same 9-day forecast example of the previous subsection, the spatial
distribution of the kinetic energy of the error. and of the ensemble spreadrespectively..
Several important aspects of the error field are indicated quite realistically in the ensemble
spread field. Note,'for example, that the absolute maxima in the error field over the two
extratropics is well predicted by the ensemble over South of Australia and over Eastern
Asia. Several error features turn out to be well predicted in the subtropics and tropics, as
well: See, for example, the correspondence beween the actual and predicted large errors
over Western Sahara and East of the Hawaiian Islands.

The spread/error PAC scores based on the ensemble forecasts are displayed in
Fig.9. The fact that the spread/error PAC is low at short lead times is due to the presence of
random. errors in the initial conditions and verifying analyses (see also Barker,' 1991 and
Wobus and Kalnay, 1995). Since there is a strong zonally symmetric component'in the
error fields, wecomputedthePAC ofthespread/errorboth with (not shown) and withoutthe
zonal mean included. The spread/skill spatial-correlation is about 0.4 without the zonal
mean and is above 0.7 with the zonal mean included. This result is encouraging,
suggesting that ensemble forecasting can result in skillful predictions of the spatial
distribution of the errors.

:6.6 Forecast of the temporal variations in skill

The ensemble forecasts can also be used to predict the variations of forecast skill (or
the reliability of forecasts) in the time domain. This has been a subject of considerable
research because of its importance for medium and ext'ended-range forecasts (e.g.,
Branstator, 1986; Kalnay and Dalcher, 1987; Palmer and Tibaldi, .1988.) If we can
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determine a prioriwhich forecasts are going to be most skillful, the utility of extended-range
forecasts can be considerably enhanced (e.g., Tracton et al, 1989). Here we will test the
relationship in time between ensemble spread and error, both expressed in termsof kinetic
energyasdiscussed above, forthetwo extratropicsandfor thetropics. Thetwo timeseries
were correlated for the test period of 40 consecutive dailyforecasts started on 6 May 1992,'
see Fig. 10. -For the NH the correlation, except for the first.two days, is around the0.6-0.7
level. (The low correlation at day one may be due to the presence of random errors in the
analysis.) The correlation for the tropics (except at days i and 2) is lower than thaf in the
NH, nevertheless it still exceeds the mark of statistical significance (.31 at the 5% level) at
most lead times. Over the SH the correlation values. reach the level of statistical
significance only at days-2 and 9. -

Except for days one and two, the scores over the NH are somewhat higher than
those obtained in the operational system designed by Wobus and Kalnay (1995) to predict
forecast skill on a regional basis, based on control forecasts from different centers, andalso
larger than those reported by .Barker (1991) in a T21, 2-layer QG perfect model
''environment. Although the resulIts presented in the last two subsections on forecast
reliability in the spatial and temporal domain are subject to more sampling variability than
those on ensemble mean predictions, they indicate the ability of the bred ensemble to
successfully predict higher moments of the forecast probability distribution. ' 

6.7 Size of the ensemble

It 'was Leith (1974) who first considered the question of how many ensemble

members are needed to improve the skill of the control forecast by ensemble averaging.
Using a simple model he found that eight members are endugh to iealize most of the gain
attainable through ensemble averaging. Houtekamer and'Derome (1995), also using a
perfect model environment but with a 3-layer, T21 resolution quasi-geostrophic model,
basically confirmed Leith's results. Barker (1991), using a setup similar to that of
Houtekamer and Derome,% examined the effect of ensemble size on the temporal
correlation. between ensemble .spread and control skill. We now consider the same
question. using a setup equivalent to the operational NMC ensemble system.

In Fig. 11; the skill of the ensemble mean, the skill in forecasting the spatial error
pattern, and the temporal correlation between ensemble spread and control error are
displayed as a function of ensemble size between 1 and 40 members. The gain from
enlarging the ensemble is most obvious when going from 2 to 4 and then to 10-member
ensembles, a result in agreement with earlier studies. Regarding forecast skill, only
minimal 'improvement is obtained beyond'20 members. However, in the temporal and
spatial relationship between'spread and error the improvement continues to increase even
up to 40 members. :From the shape ofthese curves it seems there is still'a-lot to be gained
from increasing the size of the ensemble beyond 40 members. Certainly it is clear'fromthe
' figures that'for higher forecast moments it is necessary to -have many more members in-:--.

: --- 6rderto reduce the'sampling problem 6' -. : .":. -i : 
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6.8 Comparison of bred vs. random initial perturbations

Finally, we compare the effectiveness of random and bred initial perturbations. The
random perturbations are created by linearly combining difference fields between
randomly selected analyses with random weights. Toth and Kalnay (1993) showed that
2-member bred ensembles outperformed similarly sized ensembles with random initial
perturbations in terms of ensemble mean scores.. As indicated in Table 5, this' is also true
for 10-member ensembles. The difference in the performance of ensembles with random
and bred perturbations is even larger for the error forecasts. The advantage of bred
perturbations is more pronounced over the winter hemisphere, where baroclinic
instabilities have possibly a greater.contribution to initial errors.

7. OPERATIONAL IMPLEMENTATION

The initial operational ensemble configuration implemented at NMC in December
1992 consisted one pair of bred perturbed forecasts, one T126 and a T62 bcontrol forecast,
plus a 12 hour delayed control forecast (Tracton and Kalnay, 1993).: All forecasts initiated in
the most recent. 48 hours were included, making .an ensemble of 14 valid for 10 days.
Based on the experimental results presented in the previous sections, and following the
installation at NMC of a new Cray C90 supercomputer, the ensemble forecasting system
was upgraded on 30 March 1994. In'addition to the T62 and T1 26 control forecasts, 5 bred
pairs of forecasts are run at 00Z and two pairs at 12Z, and all the forecasts are extended to
16 days. The new configuration amounts to. 17 individual. ensemble members every day.
When the forecasts from .the last two days are also considered, the total number of
ensemble members valid for two weeks is 46 (see Fig. 12 and also Tracton, 1994):

Based on the results of section 6.2, the size of the initial perturbations is set at 12.5%
and 25% of the total rms variance in the NH and SH respectively. (During SH summer, the
perturbation size there is reduced to 12.5% rms variance.) 'In the regional rescaling
procedure, the kinetic energy of the flow (rather than the previously used rms
streamfunction norm) is applied. We use 24-hour breeding cycles, and the bred
perturbations are determined as the difference between two perturbed ensemble forecasts
at 24-hour lead time. It should be noted that with this procedure the generation of bred
perturbations is performed at no cost beyond that of running the ensemble forecasts
themselves (see Fig. 5.) Preliminary results from the'new'operational ensemble system
support the experimental results reported in this paper. A detailed evaluation of the new
system is in progress and will be reported separately.

8. CONCLUSIONS 

6STracton (personal communication, 1993) also pointed out that in the 14-member
ensemble system that was operational earlier at NMC, the average of 4 of the latest forecasts was
enough to attain most Of the skill improvement, but that the reliability estimates improved further
when all 14 forecasts were considered 'in the 6-10 days forecast range.
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In this paper different aspects of ensemble forecasting were examined. First, it was
emphasized that the perturbations applied to the control initial state of the atmosphere
(analysis) must be chosen in the directions of possible growing errors in the analysis. Using
Lorenz' error growth equation we showed that if the perturbations project on the analysis
errors, averaging pairs of perturbed forecasts. results in a nonlinear filtering of forecast
errors. On. the other hand, if the initial perturbations do not project on the errors in the
analysis, the same nonlinear processes can also result in increased errors. We argued that
the analysis errors are composed not only by random errors as assumed in the operational-
statistical interpolation methods, but also by fast growing "errors of the day" introduced by
the successive use of dynamical short-range forecasts as first guess fields within the
analysis cycle.. 

The growing errors in the analysis cycle develop as perturbations upon the evolving
true state of the atmosphere. The perturbations (i.e., the analysis errors), carried forward in
the first guess forecasts, are scaled down at regular intervals by the use of observations.
HoQwever, because of the inhomogeneous distribution of observations it seems possible for
some errors in the analysis to grow without suppression by Observational data. Examples
of this-can be found over the oceans and the SH, where radiosonde data is scarce. Due to
this process, growing errors associated with the changing state of the atmosphere develop
within the analysis cycle and dominate subsequent forecast error:growth.

We argued that these errors or perturbations can be well estimated by the method of
"breeding growing modes", which simulates the development of growing errors in the
analysis cycle. In a breeding cycle, the difference field between two nonlinear forecasts is
carried forward (and scaled down at regular intervals) upon the evolving atmospheric
analysisfields. By construction, the bred modes are superpositions of the leading local ime
dependent) Lyapunov vectors (LLVs) of the atmosphere. Breeding cycles with different
initial perturbations converge after a-'few days to a subspace Of perturbations that
comprises the leading local: (in phase space) Lyapunov vectors of the atmosphere. The
unique role played by the leading LLVsin analysis/forecasting was emphasized by pointing
out that' all linear perturbations, after a transient period of 3-4 days, assume the shape of
leading LLVs. In any bred perturbation the weight on the individual leading LLVs is random,
determined by how the preceeding'perturbation projects on the different LLVs at that time.
and also on the impact of smaller scale stochastic forcing (convection) on the dominant
baroclinic processes. It was shown that perturbations from independent breeding cycles
are quasi-orthogonal without the introduction of anyconstraint.. Forthese reasons the bred
perturbations lend 'themselves as good candidates to be used as- initial ensemble
perturbations.

The growing component of the regionally varying uncertainty in the analysis was
measured as the difference between parallel analysis cycles. The average difference field
is then used as a mask in the regular rescaling process of the bred modes to insure that the
initial ensemble perturbations have a spatial distribution of amplitudes similar to that of the
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analysis errors. Each bred perturbation is both added to and subtracted from the control
analysis.

Results from 10-member experimental ensembles indicate that for short range
forecasts the optimal size of the initial perturbations is about the same as the estimated size
of analysiserrors. For longer forecasts, the optimal size is somewhat larger, presumably
because of the presence of model deficiencies which generate additional forecast errors.

We showed that for medium range forecasting the mean of the bred ensemble has
skill superior to that of (1) a double horizontal resolution control; (2) a control smoothed
optimally; and (3) an ensemble initiated with random perturbations. We also pointed out
that ensemble averaging removes the unpredictable com,ponents of the flow while leaving
the predictable part virtually intact. These results attest that-the bred ensemble mean offers
an economic wayfor improving the control forecast and thus can replace the control as our
best estimate of.the future state of the atmosphere. 

Higher moments of the probability distribution of future-states should also. be
estimated through ensemble forecasting. For, limited. samples, we showed that bred
ensemble spread correlated well with forecast error both in space and in time, surpassing
again. the performance of randomly generated ensembles. This information about the
reliability of the forecasts is especially critical at longer lead times where model
performance is known to be case dependent.

The improvement inforecast skill at and beyond 7 days lead times (0.04-0.11 in AC),
together with a robust estimate of forecast reliability (Q-0.6 temporal correlation.between
ensemble spread and forecast errors) indicates that the bred ensemble system has the
potential of' extending "weather outlooks' into the second forecast week. To capitalize on
this potential, NMC started on 30 March 1994 an ensemble forecasting system with 14
perturbed (bred) and 3 control forecasts, each extending out to 16 days in lead time. When
all forecasts initiated within the past 48 hours are considered, there is a 46-member
ensemble valid for two weeks available every day.

There has been much discussion recently both at scientific. meetings and in the
literature about the properties and relative-merits of bred modes and optimal vectors.
Despite the many differences listed in section 4 we would like to emphasize that both types
of perturbations represent a subspace of possible growing perturbations. The adjoint
technique used. to compute the optimal vectors can be supplemented with different
constraints that will make the optimal perturbations more desirable (and hence slower
growing or "sub-optimal") as initial ensemble perturbations. For example, Errico and
Ehrendorfer (1995). used a norm that emphasizes the larger scales and ensures balanced
perturbations. Houtekamer (1995) further modified the technique to obtain modes that are
statistically representative of analysis .errors in terms of baroclinic shear and spatial error
magnitude. The spectral wavenumber distribution of the initial optimal perturbations can
also be restricted to larger scales (Hartmann et al., 1995) which has an effect of reducing'
.baroclinicity that is otherwise uncharacteristic of analysis errors. Furthermore, work is in
progress at different centers to include more physical processes in the tangent linear and-
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'adjoint formulations of NWP models (e. g., Zupanski and Mesinger, 1995.)
Not'e that the bred modes are computed using the full physics package of NWP

models at the highest. required horizontal resolution. Without the introduction of any special
constrain they arewell balanced and correspond well with the estimated vertical structure
of analysis errors (Houtekamer and Derome, 1995). In viewof all the above, it will probably
remain a subjective decision which technique one applies operationally for the generation
of initial ensemble perturbations. One may add here that if practical aspects such as
simplicity and computational costs are considered, the breeding method has a clear
advantage over competing rhethodologies.

At ECMWF -the adjoint perturbation technique is used while at FNOC
pre-implementation tests are being carried out with the breeding method (M. A. Rennick,
personal communication, 19.94.) At the Atmospheric Environment' Service of Canada
experiments have been carried out with an ensemble system in which, beyond the initial
atmospheric conditions, the initial surface parameters, as well as some model parameters
are also perturbed (P. Houtekamer, personal communication, 1995.) The perturbed
atmospheric initial conditions are derived from running independent analysis cycles, in
each of which randomly generated "measurement errors" are added to the real
observational data. The independent analysis cycles can be considered as breeding
cycles, where, beyond the growing modes, random analysis errors are also well
represented in a statistical sense. 

The'different perturbation techniques have various potential advantages. Their
impact on the quality of ensemble forecasts can be evaluated only after a careful
comparison of experimental results. We conclude by noting that a combination of
ensemble forecasts from different numerical prediction centers may give further
improvement to the quality of an ensemble (Harrison et al., 1995). The benefits from having
a larger number of forecasts, and using'different analysis schemes, forecast models and
perturbation techniques may all contribute to the success of numerical weather prediction.
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Figure Captions

Fig. 1: Example indicating the gain from esemble averaging in a one-dimensionai
example using Lorenz' error growth equation. The solid curve is the error of the control
forecast, the dashed 6urves are theerror of the perturbed forecasts, and the dotted curve is
the error of the ensemble mean. E(0) is the initial error of the control forecast and P is the
amplitude of the twin perturbations.

Fig. 2: Daily amplification .of bred perturbations with different initial perturbation
sizes over the Northern (solid) and Southern (dashed) hemisphere extratropics, computed
for-the period February 23-27, 1992. The range of amplification factors for different
random (Monte Carlo) balanced perturbations is shown as a vertical dotted line. Average
amplification factors for difference fields betweern different long .short-range forecasts
verifying at the initial time of perturbed forecast integrations are also shown with a star (NH)
and a plus sign (SH).

Fig.3: An example of bred perturbations at relatively small. amplitudes: 500 hPa
streamfunction perturbation on 15 February, 1992 with a perturbation amplitude of 0.0'15%
total rms variance (equivalent to -- 0.012m in 500 hPa height.). The perturbations at this
amplitude are highly nonlinear and are primarily associated with convection.

Fig.4: 500 hPa streamfunction perturbation-fields from three independent breeding
cycles (with hemispherically constant rescaling) for 23 May 1992. The three cycles were
started with independent initial perturbations six days earlier. The six marked boxes (see
panel c) correspond 'to the areas considered in Table 1. Panels a, b, c correspond to
breeding cycles br8, br12 and brI7 in Table 1, respectively.

Fig. 5: Schematic of a self contained breeding pair of ensemble forecasts. Note that
breeding is part of the extended ensemble forecasts and that the creation of efficient initial
ensemble perturbations requires no additional computing resources beyond that needed to
run the forecasts themselves.

Fig. 6: Relative regional uncertainty (for 500 hPa streamfunction) present in the
control analysis as determined from the rms difference between two analyses from
independently run.NMC analysis cycles in April-May 1992. The analysis cycles were
practicallyidentical except that the initial first guesses differed slightly. The values shown
are smoothed and the overall global mean is scaled to.one.

Fig 7: Forecast skill (pattern anomaly correlation) of a 1 0-member ensemble mean
(solid curve) as a.function of lead time forthe (a) Northern and (b) Southern extratropics and
for the.(c) tropics, for 1992 May 6 -June14. The scorefor a single control forecast is also
shown (dotted curve).:

Fig. 8. 10-member, 9-day lead time ensemble forecast. started on"30 May 1992.-
Shown are the 500 hPa streamfunction fields for (a) verifying analysis; (b) control forecast;
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(c) ensemble mean forecast; (d) control error; (e) ensemble mean error; (f) as in .(d) but in
rms and smoothed; (g) forecast of the error (f): as in (e) but in 'rms and smoothed..

Fig. 9: Pattern correlation between predicted -and actual, error in the forecasts,
averaged for the period 6 May-1 4 June 1992. For further details, see text.

Fig. 10: Time correlation of predicted and actual forecast errors, for 6 May-1 4 June
1992. The correlation values at the 0.1 and 0.001 statistical significance levels are 0.264
and.0.501, respectively. For further details, see text.

Fig. 11: Forecast skill (solid line), .and evaluation of the prediction of the spatial
distribution (dashed lines)' and temporal variations (dotted line) in the forecast skill for 1992
May 6'-'June 14, as a.function of ensemble size, for'the NH (a), SH (b),. and for-the tropics
(c). For further details, see text.

Fig. 12: Schematic~of the configuration of the operational ensemble forecastingsystem at NMC. Each horizontal line represents a numerical forecast. High resolution,
T126 'forecasts are marked with heavy 'lines while the other forecasts'are run at -T62
resolution. Note that at OOZ there. ar two control fore:asts, one started at T1 26 resolution
and then truncated to T62 at day 7, while the other started at a T62 truncated resolution. At
1 2Z, the high resolution control is truncated after 3. days of integration. Pairs of perturbed
forecasts based on the breeding method are marked as'B1-B7. For the extended range,
forecasts originating in the most recent 48 hours are 'also used '(and are shown on the
figure.)
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TABLE 1. Subjective comparison of perturbations from.twenty independent breeding
cycles, 1992 May 23. Regional modes in three areas over both the Northern and Southern
Hemispheres, marked with boxes in Fig. 4c and numbered correspondingly from left to
right, are compared. If a mode in another cycle is very similar to.that in cycle 17, a plus or
minus sign appears, depending on the sign of the mode.

Table 1

NH NH NH SH SH SH
#1 #2 #3 #1 #2 #3bri + -

br 2 + .+ , + +

br3 + - +

bre4. ' _ '. . _ _ " _ =

br +. _ + - nbr'5 ..... - + _
br 6 . -

br7 - +
br8 + + -+ +

br9 -- + +

br 10 ---
brl1 . . + + +

br 12 - + + +

br 13 + + · +
br 14 

br i5 + - . +

br 16 + -_

br17- + + + + +

be 18 ''·brl8 -I - + + _ _ -

br 19 + + 

br 20 - . +

Total 12 11 14 11 12 11
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TABLE 2. Comparison of ensembles generated by single bred perturbations,(i. e. centering
individual perturbations on control analysis, singles) and those generated by
positive-negative pairs of perturbations (pairs)-for 1992 May 23-28, with 5/10% initial
perturbations for the NH/SH. (a) PAC skill scores at day 6; (b) Comparative verification as
a function of lead time, NH/SH combined.

a)

NH

SH 

NH/SH Combined

b)' b -- .

Control

.680

.510 -

.595

LEAD TIME (days)

3

Singles

.687 

.536

.611 
I 

Pairs

.692

.552

.622

PAIRS-SINGLES (WINS)

8-4. 
7-5

.4

5

6

9-3 
10-2
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TABLE 3 The effect of the size of initial perturbations on the performence of
1 0-member ensembles.for 1992 May 23- June 6. At the different lead times, PAC scores
are computed for the mean forecast from different ensembles. Shown is the relative
performance of each perturbation size with respect to 10% (NH, panel a) and 20% (SH,
panel b) perturbation size, in terms of'PAC wins vs. losses (W/L) and average improvement
(Al). The best results are highlighted.in bold.

a) NORTHERN HEMISPHERE

PERTURB. SIZE
(% rms variance)

5

7.5

12.5

15

20

DAY3
W/L

DAY 6
W/LAl

5- 6 -

7-5 +
2-9 -
2 -10 -

2 -10 -

6-6 
7-5

AI

1

5-7
4-8
1 -11
1 -11

a) SOUTHERN HEMISPHERE

PERTURB. SIZE
(%'rms variance)

10

15

25

30

40

DAY 3

W/L

2-10 

.4-8

7-5
7-5
3-9

DAY 6
W/LAl

-

+

5-7
6-.6

8-4
7-4

Al

+

5 -7 -

33
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+
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DAY 9
W/L

4-8
4-8
4 - 86 -6

4-8
6-6

DAY 9
W/L

:3 - 93-9
3'-9
8.- 4

Al

+4-7-5
.8-4
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TABLE 4. The effect of optimal spatial smoothing on the control and 10-member
ensemble mean forecasts for the period 1992 May 23 - June 03, with 10/20% initial
perturbations for the NH/SH. For further details, see text.

LEAD TIME
(Days)

5

7

.9

OPTIMAL SMOOTHING
(--Triangular truncation)

CONTROL ENSEMBLE

T30

-T25

T20

T40

T35 

T30

ENSEMBLE ADVANTAGE OVER 
CONTROL RETAINED

PAC 

.02

.033

.042

% Total

62.5

63.8

60.5

TABLE 5. Comparison of the control.forecasts and 10-member, randomly generated
and bred ensembles for-.1992May 23 - June 6, 10/20%initial rms amplitude, NH and SH
results combined, for days 5 (D5) and 9 (D9). lead times. PAC skill score for T,126 control is
estimated based on average difference between high and low resolution controls for three
years. For further details, see text.

FORECAST

Control T62 
.

Control, T126

Random

Bred

FCST SKILL (PAC)
D5 D9.

ISPATIAL ERROR FCST SKILL (PAC)
D5 D9 

.659 .354

.677 -

.680 .404

.691 .424

.399 .373

.480 .407

-34 -
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